Data Reduction Techniques for Simulation, Visualization and Data Analysis
نویسندگان
چکیده
منابع مشابه
Data Reduction Techniques for Scientific Visualization and Data Analysis
The classic paradigm for scientific visualization and data analysis is post-hoc, where simulation codes write results on the file system and visualization routines read them back to operate. This paradigm sees file I/O as an increasing bottleneck, in terms of both transfer rates and storage capacity. As a result, simulation scientists, as data producers, often sample available time slices to sa...
متن کاملA new approach for data visualization problem
Data visualization is the process of transforming data, information, and knowledge into visual form, making use of humans’ natural visual capabilities which reveals relationships in data sets that are not evident from the raw data, by using mathematical techniques to reduce the number of dimensions in the data set while preserving the relevant inherent properties. In this paper, we formulated d...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Dimensionality Reduction for Data Visualization
Dimensionality reduction is one of the basic operations in the toolbox of data-analysts and designers of machine learning and pattern recognition systems. Given a large set of measured variables but few observations, an obvious idea is to reduce the degrees of freedom in the measurements by representing them with a smaller set of more “condensed” variables. Another reason for reducing the dimen...
متن کاملTechniques for Large Data Visualization
Often scientific datasets are several times larger than the main memory of a computer. The size of datasets, in general, has exceeded that of main memory for several decades and will continue to do so for the foreseeable future. Because of large disk-drive latency, visualization algorithms designed to process data from main memory can rarely be directly applied to data stored on disk without mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Graphics Forum
سال: 2018
ISSN: 0167-7055
DOI: 10.1111/cgf.13336